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EXECUTIVE SUMMARY

OBJECTIVE

This report describes experiments designed to evaluate the usefulness of a specific algorithm for clas-
sifying images of commercial ships by class. This algorithm uses a technique known as sparse coding to
represent images for classification. The sparse coding algorithm is compared with another algorithm evalu-
ated in previous publications.

RESULTS

The sparse coding algorithm is shown to perform approximately as well as the algorithm it is com-
pared with and does not appear to offer any improvement.

RECOMMENDATIONS

Additional research is required to identify algorithms best suited for the ship classification task.
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1. INTRODUCTION

Automated vessel detection and recognition is an important goal for many Navy applications. The au-
tomated classification of merchant ships would assist imagery analysts and provide greater maritime do-
main awareness. This is a challenging problem, in part due to the nature of ship imagery. Ship recognition
algorithms must be able to handle variations in resolution and illumination conditions and broadly defined
ship categories.

Previous work by researchers at Space and Naval Warfare Systems Center Pacific (SSC Pacific) [5,
12—15] investigated several recognition algorithms and tested them on several data sets of ship images
from satellite imagery. Those works considered various methods for image representation and classifica-
tion, two general steps in the image recognition process. A digital image can be represented as a vector of
pixel values, or through a more involved algorithm that attempts to capture semantic value from the pixels.
Once an image is represented numerically, that representation can be passed to a classifier which will apply
a semantic label to the image. Several algorithms for representation and classification are detailed in [13].

Some of the highest accuracy results in that work were obtained by constructing image representations
with the bag of (visual) words (BOW) method [19]. The BOW algorithm first extracts local feature de-
scriptors from an image using the Scale-Invariant Feature Transform (SIFT) [8]. The descriptors are then
clustered and pooled with respect to a dictionary of vocabulary features obtained from training imagery.
The image is represented as a histogram of its pooled features. One advantage this method has over other
representation methods is that the dimensions of its output representation are independent of the dimen-
sions of its input image, which means that two images with different sizes will have the same size repre-
sentations. This makes the BOW method useful for data sets of images with non-uniform dimensions, such
as the ship data described in [14]. Several variations on the BOW method were compared in [13].

Several classification methods were investigated in [13], including Support Vector Machines (SVM),
which have been used to much success for many different recognition tasks [16]. An SVM is a type of
linear classifier that is designed to maximize the margin of the decision boundary between positive and
negative examples, or support vectors. The highest accuracy rates in [13] were achieved with BOW image
representations and SVM classifiers.

Another classification method considered in [13], sparse representation-based classification (SRC),
classifies an image representation by first expressing it as a sparse linear combination of the columns of a
dictionary matrix learned from training images. This method was used by Wright, Yang, Ganesh, Sastry,
and Ma [18] to classify images of faces represented by randomly selected pixel values.

Sparse codes have also been used for image representation, rather than for classification. An algorithm
referred to as ScCSPM! has been used for image representation by some authors as a replacement for BOW
[6, 21]. In the BOW method, SIFT descriptors are extracted and then quantized with respect to a dictio-
nary. The quantization step means that each descriptor is associated with the one dictionary element to
which it is most similar. The ScSPM method replaces quantization with sparse coding; each descriptor is
associated with the coefficients of a linear combination of dictionary elements that approximates the de-
scriptor. More information about a descriptor can be retained through sparse coding, since it can be associ-
ated with more than one dictionary element.

Any number of SIFT descriptors may be extracted from a given image, so it is necessary to some how
pool the quantized descriptors into a single representation of the image. The BOW method pools descrip-
tors into a histogram, but this discards any spatial information from the descriptors. The ScSPM method

!Similar techniques were used by Yang, Yu, Gong, and Huang [21], who called their method ScSPM to refer to sparse coding
and Spatial Pyramid Matching, and by Ji, Theiler, Chartrand, Kenyon, and Brumby [6], who call their method SIFT-based sparse
coding.



pools descriptors using a Spatial Pyramid Matching (SPM) algorithm [7] that concatenates histograms
from different regions of the image at multiple scales.

In this report, we compare the effectiveness of the ScSPM algorithm for classifying ship imagery with
that of BOW. Both algorithms are used to represent ship images, and the representations are fed into an
SVM for classification. Our results show similar classification accuracy using both methods, and suggest
that some of the perceived advantages of ScCSPM may not make a difference with certain data sets. This
report is organized as follows: the algorithms considered are detailed in Section 2, the experiments are
described in Section 3, and the report is concluded in Section 4.

2. DESCRIPTION OF ALGORITHMS

We perform image classification using two different methods for image representation—ScSPM and
BOW—each combined with an SVM classifier. This section describes the details of the implementations
of the two image representation methods.

Both image representation methods are based on SIFT feature descriptors. Typically, the SIFT algo-
rithm identifies salient keypoints in an image, then computes 128-dimensional descriptors of the region
surrounding the keypoints using a histogram of local gradients. These descriptors can be used to match
an object in different images, even under changes of scale or illumination. For this work, we use two vari-
ations on this algorithm. Dense SIFT computes SIFT descriptors at a dense grid of points, rather than at
keypoints. This implementation is faster than traditional SIFT. Dense SIFT extracts features at a single
scale, but Bosch, Zisserman, and Muoz [1] proposed a method called pyramid histogram of visual words
(PHOW) which extracts dense SIFT features at multiple scales. Both dense SIFT and PHOW are imple-
mented using the VLFeat library [17]. For either method, given an image X, we compute a set of p de-
scriptors, ¢ = y1,y2, - Yp, Withy; € R!28 for eachi = 1,--- ,p. The value of p varies with each
image.

Both representation methods also rely on a dictionary formed from a set of M training images,
xr ={X1, -, Xum}

Each training image X; provides p; descriptors, so we obtain a set

1 M
wT:{Y§)>a ;S)i)aﬂY§ )77y§)§\\§)}

containing all of the descriptors for all of the training images. Methods for constructing a dictionary from
these descriptors are described in the sections below.

2.1 SPARSE CODED FEATURES (SCSPM)

The aim of sparse coding is to express an input signal y € R™*! as a linear combination of the columns
a dictionary matrix D € R™* K The coefficients of this linear combination are stored in the vector a € RE*1,
which can be used to represent the input y. That is, we want to solve the expression

y = Da (1

for a. D should be overcomplete (X >> n) to ensure that there are more than enough columns with
which to express any given input y. If D is overcomplete, then there exist infinitely many solutions to



Equation (1). We want a to be sparse, with most of its entries zero, which means that only a few of the
columns of the dictionary contribute significantly to the representation of y. Therefore we want to find the
sparsest possible solution to Equation (1). This requirement can be expressed as

argmin Q(a) suchthat y = Da, ()
acRK
or
argmin [ly — Dal|3 + AQ(a), 3)
acRK

where €)(-) is a sparsity-enforcing function and \ is a weighting parameter. The immediately obvious
choice for (2 is the so-called ¢y “norm” ||-||, that counts the number of non-zero entries of a vector, but that
makes Problem (3) non-convex and therefore computationally challenging to solve. Another option for {2
is the ¢; norm ||-||;, a true norm. This option has been shown to yield sparse solutions [3].

2.1.1 Dictionary Learning

Many options exist for constructing a dictionary from a set of training images y7. To begin with, we
use the dense SIFT algorithm to compute the set )7 containing all of the SIFT descriptors from all of the
training images, then randomly select K descriptors from this set. The K descriptors can simply be con-
catenated into a matrix that can serve as a dictionary, but that may not lead to especially sparse solutions.
A pre-defined dictionary of basis vectors, such as one constructed with wavelets, may be used instead.
Much research has been conducted into how best to learn a dictionary that is specially adapted to training
data and that lends itself to sparse representation, and how the dictionary can be computed efficiently [10].
Some dictionary learning algorithms have been designed for a specific task such as classification [11] or
image denoising [4]. Several dictionary learning methods are compared in [6] for their use for sparse cod-
ing of image features. In the experiments described in this report, we use the SPArse Modeling Software
(SPAMS) package [9, 10] to solve the ¢-regularized problem

.1 1

argmin —— 3 min o [ly — Dall; + Al @
DGR”XK T yewT ac

where N7 is the number of signals in the training set ¢)7, and K is a fixed value indicating the desired size

of the dictionary.

We next use our learned dictionary D to compute the ScCSPM representation of an image X. For each
y € v, where 1 is the set of dense SIFT feature descriptors extracted from X, we find the sparse code a
with respect to D by solving Problem (3). We solve the ¢; regularization of (3), with () = ||-||, using the
SPAMS package. This leaves us with aset Ax = {aj,--- ,a,} containing the p sparse codes correspond-
ing to the p dense SIFT descriptors from the image X.

2.1.2 Spatial Pyramid Matching

Our next step is to pool the p descriptors into a single representation of X, for which we use the Spa-
tial Pyramid Matching (SPM) algorithm proposed by Lazebnik, Schmid, and Ponce [7]. We divide X into
three different partitions, 4 x 4,2 x 2, and 1 x 1, for a total of 21 segments. Each segment is home to a sub-
set of descriptors of X collected in v); we notate the subset of 1) associated with the /th segment by ;. We
then pool all of the descriptors from a given segment by selecting the maximum value component-wise,

giving us the vector z; = [zj(»l)] € RX, where foreachj =1,--- | K,
() _ 4 5
2 gr&}l(a], Q)
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where a; is the jth component of a.

At this point we have 21 vectors z1, - - - ,z2; € R, By pooling vectors from the segments of several
partitions, we are capturing information from different spatial regions and on different scales. Our last step
is to concatenate these 21 vectors into one vector z € R?*K_ The vector z is the ScCSPM representation of
the original image X.

2.2 BAG OF WORDS (BOW)

Bag of (visual) words (BOW) is a feature extraction approach inspired by the bag of words represen-
tation used in text classification tasks [20]. In text applications, BOW treats a document as a collection of
words independent of each other, ignoring the order and context in which the words are used. In image ap-
plications, BOW represents an image as a histograms of its local features, using feature descriptors such
as SIFT. For this work we used the PHOW algorithm to extract dense SIFT feature descriptors at multiple
scales.

Whereas the ScSPM algorithm represents images with respect to a dictionary, BOW represents images
with respect to a vocabulary constructed from the set of training images 7. Using the VLFeat software
library [17], we compute PHOW feature descriptors for each image in x7 and collect them in the set 7.
We then fix the parameter K and cluster the descriptors into K clusters using the k-means algorithm. This
gives us a matrix V. = [v;] fil € R™ X (where n is the length of each descriptor, in our case 128) whose
columns v; are the cluster centers, or “words.”

Given an image X, we compute the set 7/ containing its PHOW descriptors. For each y € 1, we find
the “word” that it is closest to, a step referred to as quantization. We define a function () by which to
associate y with the index of its closest “word”, that is,

Q(y) = argmin ||v; — y]l,. (©)

i=1,

After quantizing each descriptor, we compile a histogram z = [zi]fil reflecting how many of each “word”
are represented in X, so foreach: =1,--- K

zi = {y € ¥|Q(y) = i}|. (7)

This histogram z € RX is the BOW representation of the image X.

3. EXPERIMENTS

We compared the effectiveness of the ScCSPM and BOW algorithms for image representations by using
them to classify a four-class set of ship images chipped from satellite imagery. The data set contains 200
images per class, and each image is repeated under various degrees of pre-processing to give four separate
data sets; the original images have non-uniform dimensions and have ships pointed in every direction, the
rotated images have all the ships pointing up, the cropped images have some excess background removed,
and the resized images are all 300 x 150 pixels and have bow, stern, port, and starboard points on each ship
aligned. This data set is described in more detail in [14].

We tested each representation algorithm with two different values of K (1000 and 2000 for BOW and
1024 and 2048 for ScSPM), which represents the dictionary size for ScCSPM and the vocabulary size for



BOW. For each pre-processing type, we divided the images into 80%/20% splits, using 160 images per
class for training and the remainder for testing. We classified the testing images with an SVM, imple-
mented with LibSVM [2], using a linear kernel. We classified each data set five times, each time with a
different split used for testing. Table 1 shows the average classification accuracy over the five runs, for
each representation algorithm, dictionary or vocabulary size, and data type.

One distinction between the ScSPM and BOW algorithms is that ScSPM preserves some spatial infor-
mation, but BOW does not. It is not surprising that on the original data set there is a four percentage point
drop in average accuracy from BOW to ScSPM when K = 1000 or 1024, and a six percentage point drop
when K = 2000 or 2048. This is because the original data is not spatially uniform, so different regions
of the ships are not in the same locations from image to image. For the other data sets, all of which have
some spatial uniformity, the results between the two algorithms are similar, with no clear advantage to ei-
ther.

Table 1. Average classification accuracies on various data sets using either BOW or ScSPM image
representations.

BOW

K =1000 | K = 2000
Original Data 76.0 79.4
Rotated 91.5 91.5
Cropped 92.3 92.8
Resized 94.0 94.8

ScSPM

K =1024 | K =2048
Original Data 72.0 73.3
Rotated 90.3 90.0
Cropped 93.9 94.1
Resized 95.0 94.3

4. CONCLUSION

This report contains results from experiments testing the hypothesis that the ScCSPM algorithm, which
produces sparse coded image representations with learned dictionaries, will provide improvement to clas-
sification accuracy over the BOW methods tested on ship imagery in [13, 14]. This hypothesis does not
hold, and our results suggest that ScCSPM is not as effective as BOW on data with no spatial alignment. On
aligned data the two algorithms perform similarly; however, the performance of ScSPM algorithm may be
improved by different parameter selections. Many variations of BOW were detailed and tested in [13], and
the variant described in this report produced the best results of all those tested. There are several possible
ways to improve ScSPM, none of which have been tried on this ship data. Future experimentation will test
other ways to solve the dictionary learning Problem (4) as well as the sparse coding Problem (3).
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